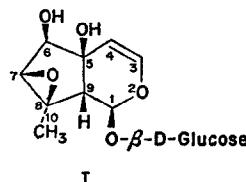


SCROPHULARIACEAE

ISOLATION OF ANTIRRINOSIDE FROM *LINARIA VULGARIS*

O. STICHER

Pharmazeutisches Institut, Eidgenössische Technische Hochschule, Zürich, Switzerland


(Received 16 November 1970)

Abstract—Antirrinoside (I) has been isolated from dried leaves of *Linaria vulgaris* Mill. The occurrence of aucubin reported by Valdés¹ for the flowers and leaves of various *Linaria* species was not confirmed.

Zusammenfassung—Aus getrockneten Blättern von *Linaria vulgaris* Mill. wurde Antirrinosid (I) isoliert. Das Vorkommen von Aucubin, welches von Valdés¹ für Blüten und Blätter verschiedener *Linaria*-Species beschrieben wurde, kann nicht bestätigt werden.

RECENTLY, Valdés¹ has studied the flower and leaf pigments present in the genus *Linaria* and in several species he also detected aucubin. The near relationship of the genus *Linaria* to *Antirrhinum* led us to doubt the presence of aucubin in the former. The iridoid glucosides so far isolated from *Antirrhinum* species are antirrinoside (I),² 5-*O*- β -glucosyl-antirrinoside³ and antirride.⁴

Our investigation of *Linaria vulgaris* Mill. showed, that aucubin is not present either in the leaves or in the flowers. Using TLC, the principle iridoid constituent was shown to have similar properties to (I) and to occur both in flowers and in leaves. The NMR spectrum of the isolated compound shows all the typical peaks for antirrinoside (I) (see Experimental).

EXPERIMENTAL

50 g of dried leaves of *Linaria vulgaris* (collected in June 1970 near Ligerz, Switzerland) were extracted for 30 min with hot 95% EtOH. The suspension was filtered and the residue re-extracted. The EtOH was removed under vacuum and the residue, after addition of H₂O, was extracted several times with Et₂O. Phenols, tannins and flavonoids were removed from the aqueous solution by filtration using Al₂O₃.⁵ The filtrate was evaporated to dryness. The iridoids were separated by column chromatography using silica gel (*n*-BuOH-MeOH-H₂O, 70:5:20). The crude antirrinoside was purified by column chromatography using silica gel (acetone).² After filtration (MF-Millipore GSWP 0.22 μ m) and lyophilization, 2.15 g (4.3%) of pure, amorphous antirrinoside (I) were obtained ($[\alpha]_D^{22} -78.3^\circ$ (c = 4.21; dioxane)). The IR and NMR spectra of the isolated antirrinoside have been found to be identical with the spectra of an authentic sample of J.* NMR spectrum of antirrinoside (see also²) (D₂O, TMS as external standard; 100 MHz) δ (ppm) 6.91 d

* Isolated from *Antirrhinum majus* L. (Scrophulariaceae).

¹ B. VALDÉS, *Phytochem.* **9**, 1253 (1970).

² M. L. SCARPATI, M. GUISO and P. ESPOSITO, *Gazz. Chim. Ital.* **98**, 177 (1968).

³ M. GUISO and M. L. SCARPATI, *Gazz. Chim. Ital.* **99**, 800 (1969).

⁴ M. L. SCARPATI and M. GUISO, *Gazz. Chim. Ital.* **99**, 807 (1969).

⁵ O. STICHER, *Pharm. Acta Helv.* **44**, 453 (1969) and references cited therein.

($J_{(c/s)}$ = 6.2), for H at C-3; 5.95 d (J = 6.2), for H at C-1; 5.41 d (J = 6.2), for H at C-4; 4.53 d (J = 2.0), for H at C-6; 4.05 d (J = 2.0), for H at C-7; 2.95 d (J = 6.2), for H at C-9; 1.95 s, for 3 H at C-10.

Acknowledgements.—The author thanks Professor H. Schmid of the University of Zürich for the possibility of using the facilities of his department, Professor W. von Philipsborn and Dr. T. Winkler for the measurement of the NMR spectra and H. Frohofer for IR spectra and optical rotation determinations.

Phytochemistry, 1971, Vol. 10, pp. 1975 to 1976. Pergamon Press. Printed in England.

MONOCOTYLEDONAE

ORCHIDACEAE

ISOQUERCITRIN FROM *ORCHIS SAMBUCINA*

SERGIO TIRA

Istituto di Chimica Organica, Università, 10125 Torino, Italy

(Received 4 November 1970)

Abstract.—A flavonoid pigment of *Orchis sambucina* is isolated and identified as 3- O - β -D glucoside of quercetin (isoquercitrin).

Plant. *Orchis sambucina* L. (syn.: *Dactylorhiza sambucina* L., *Dactylorhiza sambucina* (L.) Soò).¹

Material. Air-dried flowers of yellow *O. sambucina*, collected at Colle di Tenda (Piemonte, Italy), about 1700 m above sea level, Summer 1969.

Previous works. No information on chemical constituents of this species. The congeneric *O. mascula* is referred as containing cyanidin 3,5-diglucoside.²

Uses. The roots of several Orchidaceae, probably including *O. sambucina*, furnish Tubera Salep, forming a water-jelly highly nutritious and also used as an industrial starch.³

Isolated flavonoid. Isoquercitrin (3,3',4',5,7-pentahydroxyflavone 3- O - β -D glucoside), from the 20% MeOH extract of the defatted flowers by polyamide column⁴ and preparative paper chromatography. Identified by UV spectra,⁵⁻⁷ R_f values,⁸ and hydrolysis. The PMR spectrum of the compound acetate (pyridine, acetic anhydride; 24 hr) agree with the

¹ A. DUPERREX and R. DOUGOUD, *Orchidées d'Europe*, p. 129, Delachaux & Niestlé, Neuchatel (1955).

² J. B. HARBORNE, *Comparative Biochemistry of the Flavonoids*, p. 235, Academic Press, London (1967).

³ E. F. STEINMETZ, *Materia Medica Vegetabilis*, p. 395, Steinmetz, Amsterdam (1954).

⁴ T. J. MABRY, K. R. MARKHAM and M. B. THOMAS, *The Systematic Identification of Flavonoids*, p. 17, Springer-Verlag, Berlin (1970).

⁵ L. HÖRHAMMER, H. WAGNER, H.-G. ARNDT, R. DISCHERL and L. FARKAS, *Chem. Ber.* **101**, 450 (1968).

⁶ W. E. ILLIS and K. ISOI, *Phytochem.* **4**, 541 (1965).

⁷ K. R. MARKHAM and T. J. MABRY, *Phytochem.* **7**, 1197 (1968).

⁸ J. B. HARBORNE, *J. Chromatog.* **2**, 581 (1959).